

Wetland and Wet Area Best Management Practices for Forest Stewards

Background

In 2015, Green Seattle Partnership (GSP) set out to improve and document our best management practices for working in wetlands and wet areas. This work was funded by Seattle Parks and Recreation as well as a grant secured by Friends of Frink Park through the King Conservation District. Much of the content was developed by Natural Systems Design, a local ecological restoration consulting firm, with review and input provided by the GSP Field Committee.

GSP's restoration work is regulated under the State Environmental Policy Act (SEPA) process, which was used to assess potential environmental impacts of our restoration program and to issue project requirements that are embodied in the Forest Steward Field Guide. The City of Seattle has determined that as long as City staff, their contractors, and GSP volunteers comply with the BMPs, then we are in compliance with the restrictions set forth in the City's Critical Areas Ordinances (CAO), and therefore in compliance with State and Federal regulations.

If your site has wet areas or designated wetlands, the restoration strategy you choose may differ from nearby upland areas:

- Many wetlands will be too wet to work in during the winter and spring and should be avoided in order to minimize soil disturbance and damage to the roots of native plants
- Many wetlands can support late-spring or even summer plantings, after the typical planting season has ended
- Fragile soils in most wetlands are highly susceptible to soil compaction, so larger volunteer group events should be avoided when saturated soils are present
- The use of wetlands by wildlife, especially birds and amphibians, might preclude larger volunteer events and also may influence the overall approach (timing and possible phasing) for restoring the area
- Wet or moist soils will make it easier for some weed plant fragments to re-root. Onsite composting of invasive plants, therefore, may need to follow a modified strategy. Similarly, loose plant fragments of some invasive species inadvertently left across the site can easily re-root, so site clean-up may need to be more thorough
- In wetter areas, the invasive species that are present will differ from other areas as will the native species that should be retained and installed
- Mulch application around native plantings may not always be desirable, especially when the site retains soil moisture within the root zone during the dry summer and late fall months or when invasive regrowth pressure is thought to be low. And because soil moisture is high, it is more important to use mulch that is free of weed seeds and invasive plant fragments.
- Care should be taken when considering restoration work on wet slopes of any gradient. These areas present serious challenges from erosion, which can lead to excessive sediment production or even landslides. The Parks Plant Ecologist may determine that work on a wet slope must be performed by parks staff or a paid crew, or that further analysis by a qualified professional is required prior to the start of restoration activities.

This document, along with information presented in the Forest Steward Field Guide, will help you work more effectively and safely in sensitive wet areas in Seattle Parks.

Site Assessment

The following decision tree is intended to help you determine if your site, or a portion of it, exhibits wetland conditions. If it does, you will want to design your restoration work in a way that minimizes disturbances to this sensitive area.

Wetlands, as legally defined in 1982 by the US Army Corps of Engineers, are, "those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions." In essence, an area that is wet often and long enough to create sub-surface anaerobic conditions that only certain plant and bacterial species have adapted to. The bacteria, which survive with the help of the plants, alter the chemistry, physical structure, and appearance of the soil. Signs of all three factors (water, altered soils, and hydrophytic plant species) are required to declare that a site is a wetland.

The formal process for determining if a wetland exists, and its size and shape, is based on the 1987 Army Corps of Engineers Wetland Delineation Manual and the 2010 Regional Supplement. During the formal delineation process, data points are established within and outside of the wetland and procedures are followed to examine whether or not the soils, the hydrology, and the plant species taken together provide indications that the site is a wetland. In our region, there are 19 possible soil indicators, 27 possible hydrologic indicators, and three vegetation tests that can be performed. The site has to exhibit at least one of the indicators for each parameter (soil, hydrology, and vegetation) in a manner that makes physiological sense.

The decision tree on the next page was developed to simplify the determination. It cannot replace a formal delineation, but it does provide a reasonable assessment that will help forest stewards and other volunteers identify the presence of potential wetland in order to limit the impacts to these socially, economically, and biologically important areas.

To use the decision tree, work through the questions beginning with number 1. It is set up to be initiated at any time of year. Keep in mind though that the more time you have to observe the site over the course of at least one year, the better understanding you will have of how it functions and the more informed your restoration strategy will be.

Wet Area Decision Tree

It's important to be able to answer the question: *Does my site have a wetland or wet area*? Answer the questions below, starting with 1. If you get to a green box, move to the next question. If you land on a blue box with the wetland symbol, you have a wetland! An orange box indicates that you have upland site.

Erosion Control

It's important for our restoration sites and our entire watershed that we keep soil in place. The following should be considered as you move forward with invasive plant removal:

- Volunteers are prohibited from working on slopes greater than 40%. Slope work will be coordinated by GSP staff and accomplished by professional crews.
- Wet slopes with seeps or perched wetlands present specific challenges, including an increased likelihood of soil erosion and the possibility of more deep-seated stability problems. GSP staff will help determine if wet slopes under 40% will need professional crew attention.
- During the wet season, bare soils susceptible to erosion must be covered within 5 days of being exposed. This is an important requirement of our GSP programmatic SEPA. Leaves, downed wood or twigs, blackberry canes (cut to 2 ft. length), and forest duff, burlap, and wood chip mulch can all be used to cover soils.
- To reduce the chance of erosion in wet areas, follow the explanation on page10 of the <u>Forest Steward</u> <u>Field Guide</u> for using stewardship paths and duck boards to access your site.
- If your site is close to a lake, stream, or wetland (or even a drain structure), erosion barriers may be needed during invasive plant removal efforts. GSP Staff can provide recommendations, materials (like coir logs or erosion blankets), and crew support if needed.
- Use wood debris from your site and lay/stake it perpendicular to the slope to provide some additional stability.
- Flag clearing limits to avoid impacting sensitive areas, especially during larger volunteer events.

Site Access and Stewardship Trails through Wet Areas

To minimize disturbance, temporary access routes to restoration areas need to be carefully planned and laid out.

- Planning must take into account the disturbances that access will have on those maintained habitat patches and organize the overall site layout in the most benign way. For example, access paths should travel though the center of restoration areas not adjacent to them. In this way, travel is kept at a distance from intact habitat patches.
- Use planks (duck boards), coir fabric paths, or wood chips to create a
 protective surface on saturated soils where stewardship access trails are to
 be developed. Remove planks when no active restoration is planned. Prior to
 removing coir or scattering wood chips, assess the potential impacts. It may
 be that leaving the biodegradable material in place is the lowest impact.

Volunteer Work Party Size in Wet Areas

- Small work parties should be used when site conditions are at or near their driest. On sites where
 saturated soil conditions persist year-round access into and out of the site should be closely
 managed and the fewest possible temporary paths established with removable materials. A "small
 work party" is when the group size can be closely supervised at all times with no one working out
 of sight of knowledgeable trained supervisors.
- Large work parties should be avoided due to the fragile soil structure and saturated conditions. A "large work party" is an "event" type work party where individuals are often working unsupervised, out of sight and may never have done this type of work before.
- On sites where saturated soil surface conditions exist for only part of the year but the site 'dries out', restoration activities (e.g. invasive removal, planting, maintenance, and monitoring) should

be scheduled to occur during the drier season months whenever possible. Large work parties are allowed within these sites during the dry season as long as restoration activities, including the installation of any Temporary Erosion and Sediment Controls (TESC) measures, are tapered off prior to the onset of the rainy season.

Invasive Plant Removal

Seattle Parks and Recreation is committed to using the Integrated Pest Management (IPM) decision making process when developing invasive plant management programs. Within this context, a full range of management options are considered and utilized. Decisions are guided by weed biology, site constraints, and anticipated volunteer labor availability. A comprehensive IPM program is defined based on its likelihood for success within the bounds of the Department's policies of pesticide use reduction and least toxic chemical options.

The following species are commonly found in wet areas. Additional species-specific best management practices can be found in the Forest Steward Field Guide or on the King County Noxious Weeds website (<u>http://www.kingcounty.gov/environment/animals-and-plants/noxious-weeds.aspx</u>).

A "small" infestation is an area from which you can effectively and reasonably remove all necessary plant material (usually all above and below ground parts) given your available time, ability, and resources. This size will vary from person to person, by species, stand density, and by site conditions. When deciding if an infestation can reasonably be removed manually, it is important to weigh the full impacts of manual removal against those of other methods. Soil disturbance, the potential to scatter plant fragments that could then re-sprout, the risk that composted materials could re-sprout in new locations, the impact of dragging and hauling vegetative material across a site, the potential to increase turbidity (sediments in water) in nearby water, and the impact to wildlife caused by one's presence at a site for long periods of time, are all real disturbances. Manual removal can be effective in smaller infestations, but should not be used when other methods produce fewer negative impacts, in area of standing water, or on steep slopes.

Reed canary grass (Phalaris arundinacea)

- Manual removal is not practical for any but the smallest patches (1-4 sq. ft.). Hand dig when the ground is soft. Be sure to remove all roots and rhizomes (belowground stems) because any left in the soil will re-sprout. Monitor the site for regrowth.
- Reed canary grass roots and rhizomes can be composted on site away from wet areas so long as root and rhizomes are not in contact with the soil.
- For areas where reed canary grass is dominant, a long-term control strategy may be to shade it out. Shade production won't eradicate the species, but it will control it and allow for a more structurally and genetically diverse site. The initial task is to use sheet mulch with several layers of cardboard or burlap and 6 inches of wood chip mulch. Do not sheet mulch in areas where standing water will achieve a depth of more than 6 inches. Leave in place for at least one growing season. Monitor the edges for shoots coming up from lateral growth of rhizomes. Efficacy can be increased by removing above ground plant material at or just after flowering with hand tools prior to laying down sheet mulch. Any above ground material not yet gone to seed (leaves, blades, or stems) that are removed prior to sheet mulching, can be left on site where it falls.
- After at least one growing season, the area should be planted with native species. Plant layout should be dense (see the plant spacing table on page XX for examples of "dense") over the entire site or in a clump-gap or row pattern. The latter two patterns would require City staff or contractors to mow the areas (the gaps or areas between rows) between native plants for 1 to 2 seasons. Fast growing species adapted to wet areas such as black cottonwood, red alder, and

several willow species should be installed initially. Once they become established, a second planting of shade tolerant species such as western red cedar, thicket-forming species like red osier dogwood, snowberry, and Nootka rose; and fast growing conifers like Douglas-fir and grand fir (placed along southerly and westerly edges) should be planted.

Yellow flag iris (Iris pseudacorus)

- Manual removal can be effective for small infestations, especially for very young plants not yet established. Manual removal of larger plants requires special attention to remove the rhizome. The rhizome is tough and may require heavier tools, such as pickaxes or saws. If you do not get the rhizome, more plants will be produced. Keep watching the location after you have removed the plants - new leaves will show you where you missed any sections of rhizome.
- When removing manually, precautions should be taken to protect the skin, as resins in the leaves and rhizomes can cause irritation.
- When removing vegetation near streams and wetlands use barriers to prevent sediment and vegetative debris from entering the water system. See Erosion Control section on page 10 of the <u>Forest Steward Field Guide</u> for more information.
- For larger or more established infestations where manual removal is impractical, consult with GSP Staff for options. In most cases, controlling this species will require multiple methods over several years, potentially including cutting and herbicide by professional crews.
- If composting rhizome segments, be sure to compost away from wet sites. If this is unfeasible, then securely bag and arrange for it to be disposed of in the trash.

Purple Loosestrife (Lythrum salicaria) and Garden Loosestrife (Lysimachia vulgaris)

- NOTE: Under the Washington State Lythrum quarantine (WAC 16.752), it is illegal to transport, buy, sell, offer to sell, or to distribute plants, plant parts or seeds of purple loosestrife into or within the state of Washington. However, by following the recommendations in the Best Management Practices document linked above, you are covered under the King County Noxious Weed Control Program's permit to transport purple loosestrife for the purpose of taking it to a transfer station or landfill.
- Hand pulling is recommended for young plants or older plants in sandy, mucky, moist, or loose soil. This may be impractical to impossible when trying to remove hardy, woody roots in compacted soils.
- If the plants are in flower or in seed, cut off and securely bag all flower heads. Pulling plants in seed will disperse the small, lightweight seeds. Cut plants may continue to produce flowers later in the season, so these sites will have to be consistently and regularly monitored until frost to cut and remove any subsequent flowers. Cutting will not control purple loosestrife but it can serve in the interim until more effective control measures can be accomplished.
- Care should be taken to minimize erosion when digging in saturated soils on shorelines. When removing vegetation on shorelines (by lakes, streams and wetlands) use barriers to prevent sediment and vegetative debris from entering the water system. See Erosion Control section on page 10 of the <u>Forest Steward Field Guide</u> for more information.
- Brush off boots, clothing and tools prior to leaving the infested area. All parts of the purple loosestrife plant, including flowers, seed heads, stems, leaves and roots must be securely bagged, and discarded in the trash or taken to a transfer station. Do not compost or place in yard waste. Plants may regenerate in compost.
- For larger or more established infestations where manual removal is impractical, consult with GSP Staff for options. In most cases, controlling this species will require multiple methods over several years, potentially including cutting and herbicide by professional crews.

Bittersweet nightshade (Solanum dulcamara)

- Hand-pull the stem close to the ground and pull or dig up the roots, taking care not to break the slender roots. This method is most effective with young plants and small infestations. Manual control works best after rain or in loose soils. Tools that work include shovels, spades, and hand-tillers to loosen soil.
- When manual removal is used in wet areas, take care to prevent soil erosion. See Erosion Control section on page 10 of the <u>Forest Steward Field Guide</u> for more information.
- Wear gloves when handling bittersweet nightshade as it is toxic to people, pets, and livestock.
- Fruiting plants and root balls should be collected and discarded with the trash or taken to a transfer station for disposal. Composting root balls is not recommended. Stems can be left on site to dry out and decompose if they are in a dry area where they will not move into waterways or onto moist soil.

Policeman's helmet (Impatiens glandulifera) and Jewelweed (Impatiens noli-tangere)

- Manual removal is effective for small infestations. Pull or dig up plants in the spring or early summer when the soil is still moist and before the plant develops seed capsules.
- Cut and bag all flower and seed heads using sturdy plastic bags. Dispose as garbage; do not put in yard waste or compost bins. Stems can be left on site to be composted but only if they are first crushed and dried out thoroughly. Do not let plant fragments get into waterways.

Yellow archangel (Lamiastrum galeobdolon)

- Manual removal is generally not effective. Plants grow densely, sprout from root or stem fragments, grows easily among desirable vegetation, and is labor intensive to hand pull.
- For very small populations (less than 10 sq. ft.), try continuous hand-pulling. Be careful to remove all root and stem fragments by sifting through the soil. This is easiest to do fall through early spring.
- Dense infestations can be controlled by sheet-mulching. It is crucial to control any escaping plants and to regularly check for holes in the covering material.
- Stem fragments and roots can re-sprout if left in contact with wet ground. Plant material may be composted on site if thoroughly dried out. Do not let plant fragments get into waterways.

Composting

If you are in working in a wet area, or on soils that you expect will become saturated later in the season:

- Locate compost piles where soils can freely drain all year. This will help minimize the likelihood that plant fragments will re-root from the compost pile.
- When removing invasive species from next to a waterway (lakes, streams, wetlands) use a barrier to prevent sediment or any part of the plant that may regenerate (flower heads, seed heads, roots, and stem and leaf tissue from many species) from getting into the watercourse. Barriers may include a sheet, tarp, or cardboard and may require a second pair of hands.

Using Mulch

• When applying mulch near a stream bank, do not apply material below the ordinary high water mark (OHWM). This is the elevation to which stream flows regularly rise. It can be estimated by locating exposed woody roots along the stream bank where soils have been scoured away or by identifying

where herbaceous plants do not grow. Mulch placed below the OHWM has a high chance of washing away during a rain event.

• When mulch is used in wet areas and wetlands, it should be free of weed seed and invasive plant fragments. It should only be used in wetlands that dry out during summer and early fall months or where invasive regrowth pressure is high.

Planting Timing

When to plant in a wetland? There is no simple answer as to when to plant in a wet areas or wetlands, but by answering the following questions you should be able to get to the best answer for your wet area:

- Do the soils dry out during part of the year? If so, you will want to plant in the fall, as soon as the soils become wet again, or in the spring after soils have dried enough that you can access the area but several months before the beginning of the dry period.
- Are the soils within the plant's root zone saturated all year? Saturated soils will glisten, but you may have to dig a few inches to find them. If soils are saturated in the summer, they may become inundated, or flooded in the winter and spring. If so, prime planting time is usually between late spring and early fall, when the soil is only saturated. To ensure plant establishment, do not plant within the 2 months prior to site flooding as plants can float out of their holes. Avoid planting a site if it is under water.
- If your site has standing open water at a depth of at least 10 cm between Dec 1 and June 1, then avoid work during this period as it may impact breeding and developing amphibian species. Some native amphibian species will continue to breed into mid-summer (i.e. Pacific chorus frog).

Plant Installation

The following installation explanation covers emergent plugs. For more information on other stock types (container plants and live stakes), see the Forest Steward Field Guide.

- When planting emergent bare-root plugs the most common method is to use a dibble tool or narrow-bladed shovel to open up a hole in soft saturated soil. Keep plugs in their packaging until just before planting. Make a slit in the soil, levering back and forth to open the slit to fit the plug. Alternatively, make a pilot hole with a rock bar or a piece of re-bar that is larger than the diameter of the plug.
- Carefully install the plug and then compact the surrounding soil to remove large air pockets, but do not over compact. Like other stock types, install the bare-root plug so that the soil surface of the plug matches the surrounding soil surface.

Wildlife Habitat Considerations

Wetlands are sensitive places rich in birds and amphibians. The hydro-period, or the wetland's seasonal pattern of fluctuating water levels, and the presence of breeding bird and amphibians during portions of the year contribute to a series of timing constraints that make restoration in and near wetlands challenging.

Birds:

- Whenever possible, conduct the majority of restoration work between August 1 and January 31 to avoid and minimize negative effects on bird breeding.
- Avoid large-scale invasive removal activities in wetlands and their vegetated buffers, particularly large-scale removal of invasive thickets and small trees, during the early and primary bird-nesting season (February 1 to July 31). Wildlife that are attracted to wetlands use the vegetation surrounding the wetland to search for food, build nests and other dwellings, mate and seek protection. There is no single standard buffer width but typically regulators set the width, the distance from the wetland out to the "edge" of the buffer anywhere from 50 to 200 feet. For most GSP sites, a minimum standard buffer width of 75' should be used for limiting large-scale invasive removal near wetlands. A large-scale invasive clearing is one where more than ¼ of the area comprising the wetland and the buffer surrounding a wetland is removed at a time. Instead, limit removal to ¼ of the combined area, and delay further invasive removal until the installed native vegetation has grown to provide 50% of the functional structure of the vegetation that was removed. Formally delineated wetlands may have buffer widths that are larger than 75'.
- If there is open water in your restoration site, watch for duck nests along shorelines after March 1st. They tend to nest earlier than other birds. Avoid nests if found.
- Use the GSP Bird BMPs for additional information on assessing bird nesting at your site, reducing impacts, and improving bird habitat (add reference).

Amphibians:

- Pacific chorus frogs, Red legged frogs, Northwestern salamanders, long-toed salamanders, Ensatina, and western red backed salamanders are very common in King County wetlands. The first five of these species breed in standing water and the last two breed terrestrially.
- If your site has standing open water at a depth of at least 10 cm between Dec 1 and June 1, then avoid work during this period as it may impact breeding and developing amphibian species. Some native amphibian species will continue to breed into mid-summer (i.e. Pacific chorus frog). Signs that active breeding is occurring include the presence of nighttime mating calls especially during the months February to April and egg clusters attached to submerged vegetative debris in shallow water during the spring. Not all species present obvious indicators that breeding activity is occurring however and it is not necessary to positively identify habitat use.
- Amphibian species richness in a wetland to a large extent depends on adjacent land use more adjacent land in undeveloped forest usually means greater potential for species richness. It is therefore important to consider areas adjacent to wetlands (the buffers) when planning and scheduling your project. Buffer integrity, meaning both the width of the buffer and also its structural complexity are important design factors when planning. A spatially phased strategy, not only within the wetland but in the buffer as well, minimizes negative impacts to amphibians.

Reducing Dog Access:

• Besides wildlife, wet areas also attract thirsty and curious dogs. Efforts can be made to block entry to stewardship access paths between uses. In some areas, it might make sense to leave a thicket

of invasive species near the access entrance or along all of or part of the project area perimeter to act as a barrier. A full or partial perimeter of invasive vegetation would then be removed and the area restored once the interior of the site is established. Vegetative debris (logs, slash, boughs, and branches) should be stockpiled near the stewardship access trail entrance and be used to block access to the restoration site. Invasive thickets left in place, or native thickets that straddle the path entrance work best to solidify the barrier. Keep in mind that any barrier that looks obviously out of place will attract curious humans. Try to make a barrier that is physically effective but visually blends in with the existing vegetation.

References and Further Reading

- Azous, A.L. and R.R. Horner. 1997. Wetlands and Urbanization, Implications for the Future. Final report of the Puget Sound Wetlands and Stormwater Management Research Program. Chapter Five: Amphibian Distribution, Abundance and Habitat Use, pp 95-110. WA State Department of Ecology, King County Water and Land Resources Division, and the University of Washington
- City of Portland Environmental Services. 2010. Terrestrial Ecology Enhancement Strategy Guidance: Avoiding Impacts on Nesting Birds during Construction and Revegetation Projects. Portland, OR.
- City of Seattle Department of Planning and Development. 2009. Tip 326: Environmentally Critical Areas: Wetlands and Fish & Wildlife Habitat Conservation Areas. URL: <u>http://web6.seattle.gov/DPD/CAMS/CamDetail.aspx?cn=326</u>
- City of Seattle Department of Planning and Development. 2007. Tip 331A: Environmentally Critical Areas: Vegetation Restoration. URL: <u>http://www.seattle.gov/DPD/Publications/CAM/cam331a.pdf</u>
- City of Seattle Parks and Recreation. 1998. Best Management Practices: Natural Areas. URL: http://www.seattle.gov/parks/projects/BMP/chapter5.pdf.
- Environmental Laboratory. (1987). "Corps of Engineers Wetlands Delineation Manual," Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. URL: <u>http://el.erdc.usace.army.mil/elpubs/pdf/wlman87.pdf</u>
- King County Noxious Weed Control Program. 2014. Best Management Practices: Noxious Weed Regulatory Guidelines. October 2014. King County Department of Natural Resources and Parks, Water and Land Resources Division.
- King County Noxious Weed Control Program. 2014. Bittersweet Nightshade BMP. January 2014. King County Department of Natural Resources and Parks, Water and Land Resources Division.
- King County Noxious Weed Control Program. 2010. Policeman's Helmet BMP. January 2010. King County Department of Natural Resources and Parks, Water and Land Resources Division.
- King County Noxious Weed Control Program. 2015. Reed Canarygrass BMP. February 2015. King County Department of Natural Resources and Parks, Water and Land Resources Division.
- King County Noxious Weed Control Program. 2009. Yellow-flag Iris BMP. May 2009. King County Department of Natural Resources and Parks, Water and Land Resources Division.
- King County Noxious Weed Control Program. 2008. Yellow Archangel Weed Alert. February 2008. King County Department of Natural Resources and Parks, Water and Land Resources Division.
- Lane, R.C, and W.A. Taylor. 1996. Washington's Wetland Resources. Excerpted from U.S. Geological Survey Water Supply paper 2425, 1996. 11p.
- MacDonald, K.B., and F. Weinmann (eds.). 1997. Wetland and Riparian Restoration: Taking a Broader View. Contributed Papers and Selected Abstracts, Society for Ecological Restoration, 1995 International

Conference, September 14-16, 1995, University of Washington, Seattle, WA, USA. Publication EPA 910-R-97-007, USEPA, Region 10, Seattle, Washington.

- Syrowitz, J. 2014. Forest parkland restoration planning related to breeding birds in Seattle, WA. Prepared for City of Seattle Parks and Recreation. Audubon Washington. Seattle, WA. 55pp.
- Richter, K.O., and A.L. Azous. 1995. Amphibian Occurrence and Wetland Characteristics in the Puget Sound Basin. Wetlands, Vol. 15, No. 3, September 1995, pp 305-312. The Society of Wetland Scientists.
- U.S. Army Corps of Engineers. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, and C. V. Noble. ERDC/EL TR-10-3. Vicksburg, MS: U.S. Army Engineer Research and Development Center. URL: <u>http://www.usace.army.mil/Portals/2/docs/civilworks/regulatory/reg_supp/west_mt_finalsupp2.p_df</u>
- Washington State Department of Ecology. 2012. Aquatic Noxious Weed General Permit. Olympia, WA. 45p.
- WAC 16-752 Noxious Weed Seed and Plant Quarantine. Last updated March 12, 2014.